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Abstract. The weight ratio 6% was formed for this paper by B4C-2% (99.5% purity, 20 µm particle size), 

TiC-1% (99.5% purity, 15 µm particle size), C (99.5% purity, 21 µm particle size) and the remaining part 

is tungsten W (99.5% purity, 17 µm particle size) structure had been established.  In order to get 

homogeneous sinter, it was subjected to a temperature gradient of up to 1750 °C for 2 hours with a 

temperature step of 5 °C per minute. In the study, neutron diffraction (ND) was performed using the time-

of-flight technique (TOF) in the IBR-2M research reactor. The obtained data were refined with the 

FULLPROF Rietveld suite. The results convey that it is different from the results obtained by X-Ray 

diffraction.  
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1.     Introduction 
 

There is a constant demand for cost-effective materials with properties such as 

hardness and super-hardness in order to utilize use in various industrial applications 

(Darziyeva et al., 202; Utamuradova et al., 2023; Orujlu, 2020; Vera-Serna et al., 

2022). Transition - metal compounds - carbide, nitride, especially borides show 

mechanical, optical, electronic, etc. with higher level properties, these ceramic materials 

continue to serve as a potential source for new research (Hashimov et al., 2019; 
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Mirzayev et al., 2020; Popov et al., 2020; Bykova et al., 2022). Tungsten-boride 

structures are distinguished among ceramic compounds due to their easy synthesis and 

high mechanical peculiarities (Gong et al., 2019; Demir et al., 2021). However, despite 

being investigated for more than half a century, new structures and more accurate 

investigations in recent years illustrate that there are still gaps in their fundamental 

understanding and rational features, which preserves their scientific appeal (Belichko et 

al., 2022; Mirzayev et al., 2022; Aliyev et al., 2019). Therefore, multiform synthesis 

and experimental methods were used to reveal the structure and features of structures 

with complex multi-atom composition (Agayev et al., 2022). In the given literature, the 

synthesis of WB4 crystals with a hexagonal structure and the changes in their 

mechanical properties when subjected to pressure up to 54 GPa by the X-ray diffraction 

method - investigation of parameters such as single crystal compressibility, hardness, 

Yung's modulus - have been reflected (Bykova et al., 2022). It was found that the 

hexagonal polycrystalline WB4 tungsten tetraborides replaced tungsten atoms along the 

c axis with B-B covalent bonds, which increased its anisotropy property. In the obtained 

single crystal, tungsten atoms fully occupy their positions and exhibit hardness under 

pressure conditions of about 36 GPa. Determining the systematically optimal structure 

of tungsten boride compounds, as well as thermodynamically stable and metastable 

structures with a majority of boron atoms, shows itself as a priority. In the experiments 

conducted on this basis (Li et al., 2013), it was determined that tungsten borides with 

P63=mmc-2u WB2, R-3m-6u WB3 and P63=mmc WB4 structures are 

thermodynamically stable. Obtaining and researching enriched and complex structures 

of tungsten-based transition-metal compounds is still relevant. In this regard, the 

obtained results suggest that WB4.2 is the most energetically best case with a minimal 

energy of 3 MeV per atom among the formations with different structures obtained 

under temperature and pressure (Kvashnin et al., 2020). 

As a result of obtaining and characterizing solid materials included in the tungsten 

boride class, all space groups and lattice parameters of certain structures are known in 

detail. The fact that the structures it creates are even comparable to diamond (953 GPa 

along the hP6-WB2 c-axis) makes us believe that it can really eliminate some of the 

challenges facing physics (Chrzanowska et al, 2016). Properties such as Vickers 

hardness, elastic anisotropies, and ideal stiffness are some of the properties produced by 

the strong 3-way covalent bonds formed by the B-B and W-B covalent bonds that form 

the basis of the structure. Moreover, the density of electrons located at the Fermi level 

resulted in metallic properties in these structures. After the synthesis, W2B (gamma 

phase) with a tetrogonal structure, I4/mcm space group, and WB, α and β space groups 

appear as I41 /amd and Cmcm, respectively, in which case their volumes are Vγ = 148.05 

Å3, Vα= 167.16 Å3 and Vβ= 83.43 Å3 manifested in the form (Chrzanowska et al, 2016). 

W2B with tetragonal phase of I4/m symmetry is considered to be the most mechanically 

and dynamically stable tungsten boride class (Qin et al., 2018). Furthermore, based on 

the band structure it has, it can be said that this compound is a metal. Because of this 

conductivity property and mechanical properties, W2B promises to be a key material for 

today's hard coatings and electrical measurements. 

One of the main problems of physics is related to increasing the efficiency in 

obtaining of ecologically clean energy. It is known that thermonuclear reactors have 

been the most important issue in the steps to be taken for this purpose for years. 

Diverter stages are considered one of the main stages during construction 

(Aldabergenova et al., 2016), and the selection of raw materials for their construction is 

the most important priority. Here, when the front walls are created, the maintenance of 
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plasma columns based on superconducting magnets is one of the primary factors. If we 

look for a material with this enthusiasm, it is natural that tungsten will take place in the 

first ranks in terms of compatibility (Petaccia et al., 2019). Tungsten is the best example 

as a substance resistant to all physical and chemical effects, such as corrosion, high 

temperature and neutron radiation, in order to create longevity in the front walls. Studies 

have shown that (Aldabergenova et al., 2016) tungsten exhibits qualitatively the same 

properties despite being irradiated under different conditions than alpha rays. After the 

irradiation, the bubbles created by the alpha particles in the regions inhibited by the 

particles cause a sharp decrease in the microhardness of the material.  

Recently, there is much renewed interest on tungsten borides. Due to their 

comparatively elevated cost, they seek prospective use a radiation shielding and 

constructive materials in high-end applications like contemporary and future fusion 

reactors (Windsor, 2021). Tungsten itself is a metal with notable high melting point and 

density but also high brittleness. Tungsten borides poses even higher hardness (micro 

hardness in the range 20-30GPa (Okada et al., 1995) but together with the metal binder 

they possess increased fracture toughness. Moreover, element (B) adds to neutron 

shielding capacity. Tungsten borides possess high density, high wear resistance and 

more importantly, high sputtering resistance at high temperatures and irradiation 

conditions. Their synthesis however remains as a challenge since it requires high 

temperature solid state sintering from precursor materials. In recent years, spark plasma 

sintering or electric current assisted sintering has been applied for alleviate requirements 

on temperature and pressure needed. Applying electric current (pulsating or not) is 

believed to improve homogeneity of the sintered material, both as chemical composition 

and particle size. 

Neutron diffraction is valuable tool for studying the processes gone during high 

(temperature, pressure) synthesis and alloying, including tungsten alloys. It allows 

looking in the bulk of the material, where conditions (temperature, pressure) may differ 

from those on the surface. Applicability on borides remains somehow a challenge, 

because of the very high absorption of thermal neurons by element B. Boron possess 

high capture cross section and is known constituent of neutron shields. Therefore, most 

of the research completed up to today is either by Monte Carlo simulation (Windsor, 

2021) or XRD experiment (Okada et al., 1995). 

 

2.    Materials and methods 
 

Specimens were prepared by from precursor materials in weight percentage 6% 

B4C–2% TiC–1% C and the remainder – tungsten in the form W (99.5% purity, 17 µm 

particle size), B4C (99.5% purity, 20 µm particle size), TiC (99.5% purity, 15 µm 

particle size), and C (99.5% purity, 21 µm particle size). In this case high-temperature 

mechanical alloying was employed for sintering achieve homogeneous sintering, the 

samples are subjected to a temperature gradient for 2 hours to 1750 °C, at a temperature 

step of 5 °C per minute. Procedure is described in (Demir et al., 2020). Following such 

a procedure, we have expected that the material is formed by tungsten (W) metal matrix 

with nondispersive distributed tungsten boride particles in the volume. From similar 

research we conclude this should include W2B, but other boride phases are also possible 

(α-WB, β-WB, WB2, W2B5, WB4) as well as tungsten carbide (WC). Conceivably, 

existence phase content of these borides should depend strongly on the conditions and at 

which synthesis is a performed. Neutron diffraction (ND) measurements were 

performed on RTD (real time diffractometer) (Balagurov et al., 2016) installed on IBR-
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2M research reactor using Time-of-flight (TOF) technique. The flight path of the 

neutrons was about 24m and the time FWHM (full width at the half maximum) of the 

neutron pulse after the moderator was about 320 μs. The data was fit using FULLPROF 

Rietveld suite (Rodriguez-Carvajal et al., 1990). High boron content in the specimens 

cuases high attenuation of neutron intensity and hence measurement times of up 10h per 

specimen. Some of the as synthesized specimens was irradiated with with 2.5 MeV 

helium ions (fluence 5.0×1020 ion/cm2) and measusred with the same procedure 

(Azimova et al., 2020; Mirzayev et al., 2021).  

 

3.     Results and discussion 
 

The experimentally obtained TOF neutron spectrum and the Rietveld fit shown in 

Figure 1. 
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Fig. 1. Measured TOF neutron spectrum of non-irradiated specimen (as synthesized), Rietveld fit,  

peak positions of two crystal phases – metallic W and δ-WB as well as difference plot) 

 

Two main phases contribute to it – unreacted metallic tungsten (W) and tungsten 

boride (δ-WB) (Petaccia et al., 2019; Qin et al., 2018). Of the tungsten phase with high 

symmetry (SG I m3̅m) several peaks exist and, two main peaks dominate, namely (110) 

at 2.24 Å and (211) at 1.29Å. In the BCC crystal lattice where tungsten atoms occupy 

(0, 0, 0) positions. δ-WB phase has tetragonal space group I41/amd where tungsten 

atom occupies position (0.1/4.0/178) and boron (B) atom occupies (Mirzayev et al., 

2019) (0.1/4.0/031) position. Main results of the fit are listed in Table 1. 

The quality of measured spectrum is notably worse at high-d values of the 

spectrum, because of the scarcity of diffracting neutrons (spectrum of neutrons from the 

moderator roughly has Maxwell distribution). Spectrum was normalized by dividing by 

incoherent scattering spectrum of vanadium, time channel per time channel. There is a 

peak at 2.2Å overlapping with W(110) which remains unaccounted for. We tried to 

incorporate several other possible phases into the Rietveld fit (Fig. 2). 
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Table 1. Main result obtained by Rietveld analysis 

 

Phase SG Cell parameters Phase fracture, 

weight % 

Chemical units 

per unit sell 

W I m3̅m a = b = c = 3.168 Å 

V = 31.8 Å3 

78% 2 W 

δ-WB I41/amd a = b = 3.084 Å 

c = 17.002 Å 

V = 161.794 Å3 

22% 8 WB 

 

(a)   

(b) 
 

Fig. 2. Rietveld refinement attempt of the same spectrum with and addition of  

W2B, B4C, W2B5, WB2 (a) and TiC and WC (b) phases with designated peak positions 

 

Notably, there is indications that small fraction of W2B exists, much lower fraction than 

δ-WB, but this does not contribute to significant improvement and lowering χ2. Other 

possible phases as B4C, W2B5, WB2, TiC and WC were ruled out. We alsi tried to obtain 
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measurable effect of the influence of irradiation with high intensity He ions on the 

structure of tungsten –tungsten borides (Abdullayeva et al., 2020). Some specimen was 

irradiated at 5.0×1020 ion/cm2 fluence of 4He+ ions of 2.5 MeV energy and measured by 

TOF diffraction (Mirzayev et al., 2020). Relying on high irradiation fluence combined 

with relatively low ion energy however is expected that high degree of radiation damage 

will occur, but at very thin layer close to the surface (Tashmetov et al., 2019; Thabethe 

et al., 2022) According to the rough estimations, irradiation induced damage region in 

heavy tungsten compounds causes by light He ions has characteristic depths of order of 

few μm. Such shallow depth is not expected to contribute to any significant changes in 

the diffraction profile. Similar study conducted by us by X-ray diffraction but on 

specimen sinthesized at higher temperatures (T = 2550oC) (Neov et al., 2022) shows 

different composition of the surface layer, namely existence of predominantly W2B 

phase and small addition of δ-WB. Even at the surface layer exposed to high radiation 

damage, XRD detects only diminutive changes namely phase content and crystal 

imperfection (Mirzayev et al., 2023).  
 

4.     Conclusions 

 

The discovered deviation of the results obtained by neutron diffraction from those 

obtained previously by X-ray diffraction implying that the conditions differ 

significantly on the surface and the bulk of the specimen. This is however admissible 

since the process of synthesis under high temperatures and pressure and applied current 

delivers different physical conditions on the surface where the contact with the applied 

pressure head is applied. In addition, the process is self-running in sense that 

homogenization on the surface leads to change of the conductivity and further complete 

synthesis. The voids and the porosity in the volume remain higher. This also proves 

usefulness of the neutron diffraction as an indispensable tool for investigating the 

processes in the bulk of the material. This however is crucial because physical 

properties of the material are determined by the structure of the bulk material with the 

exception of the sputtering resistance determined by the surface structure. Altogether, 

this imposes rigorous requirements on the conditions on which synthesis is done. Most 

probably, the combination of temperature/duration in current study is not sufficient for 

complete synthesis of tungsten boride. 
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